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Controlling Environment

* Plant

= continuous dynamic system

* Controller
= discrete reactive system

* Controller brings plant
to a desired state and keeps it there

® Controller keeps a setpoint (the desired state)



Example: moving body

F (forward force) m(mass)  p (viscous friction)
o —

.................. » V (SpGEd)

Task: regulate F to accelerate to a given speed and keep the speed



Modeling using block diagram

® Block is a function

Input/output ports

Some blocks may have internal state (e.g. integrator)
® Connections

Data flow between ports

® Simulink (an extension to MATLAB) to model a
system using blocks

= Simulation, analysis, code generation

® Example: moving_body 1 no_controller.slx



Simple relay control

e Switch maximum force on/off

= Example: moving_body 2 relay.slx

* Fails when there is a lag in the system

= e.g. because of delayed actuation or because of
periodic sampling/actuation

= Example: moving _body 3 lag relay.slx



PID Controller

* Typical controller for linear state space systems

= Linear state-space systems is a system that can be
described by the following differential equation:

dx
— = Ax + Bu, y=Cx+ Du
dt
° Example (moving body): g’; _F-bv
m

%=—£x+lF, v=1x + 0F

dt m m



PID Controller

¢ |deal form:

u=kpe+kif

0

t

de
e(t)dt + k4 pr

°* Weighted sum of R R T L
three terms:

= Proportional r e

u y
= |ntegral ; d )

= Differential

®* Example: moving body 4 pi.slx

Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012




Proportional term

* Counter-acts proportionally to the error

° Low k,
= Slow action
° High k,
= May overshoot and oscillate

°* Problem
= Never reaches the set-pointif there is a steady resistance

= Can be mitigated by an extra feedforward term, but this term
may vary with the internal state of the system

® e.g. the viscous friction

°* Example: vehicle speed 1 p.slx



Effect of constants in PID
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Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Integral term

* Mitigates the steady-state error

° Low k;
= Slow gradual “learning”
®* High ki

= Big overshoot and oscillation

°* Example: vehicle_speed 2 pi.slx
= Note that pure | controller would work too, just slower

® Problem —integrator windup
= Happens when actuator reaches the saturation limit
= Integrator mistakenly accumulates value
= Example: vehicle_speed 3 pi_windup.slx
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Integrator windup
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Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Anti-windup

® Prevents the integrator to accumulate when

saturation is reached

e Example: vehicle speed 4 pi anti_windup.slx
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Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Transfer functions

e Differential and integral blocks described using
transfer function G(s)

* G(s) =

" u ... output from the controller / input to the plant
= y ... output from the plant

* Transfer function describes the effect on frequency
and phase of a periodic signal

" |G(iw)| ... gain
" £G(iw) ... phase shift
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Transfer functions — Bode plot
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Figure 8.11: Bode plot of the transfer function C(s) = 20+ 10/s + 10s corresponding to an
ideal PID controller. The top plot is the gain curve and the bottom plot is the phase curve.

Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Transfer functions — examples

Type ODE Transfer Function
1
Integrator y=u —
A
Differentiator y=1u S
1
First-order system y —
Y yray=u s+a
, 3 1
Double integrator y=u —
S
Damped oscillator 7+ 2 wyy + @3y = u :
. k:'
PID controller y=hkputkgu+kifu kp+kgs+—
S
Time delay y(t) =u(t—r1) e

Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012



Variable s

* Exponential (periodic) signal et
" s =0 + iw is a complex variable
" g ...decayrate (if 0 < 0), w ... frequency
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Transfer functions — block diagrams
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Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012

Proof of y = Gle’ e =Uu — Gzy G
case (c): y = Gu— GG,y y = 1 y
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Derivative term

®* Provides prediction of error in the future
= Does linear extrapolation
® Reduces oscillations and overshoot

° Low kg,
= Small effect on oscillations

o ngh kd
= Reduces controller response
= May itself create oscillations

°* Examples: vehicle_position_1 p.slx, vehicle _position_2_ pd.slx,
vehicle_position_3_pid.slx

* Problem — sensitivity to high frequencies (noise)
= Derivative term amplifies the high frequencies
= Mitigated by low-pass filtering
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Effect of constants in PID

0 10 20

0 10 20
Time ¢

(a) Proportional control

L5} /szk ki1
;b.\
&
=
Q0.5 T
0 1
0 10 20
4 L
= ki
5 2 % -
aQ,
G e
— 0
_2 !
0 10 20
Time ¢
(b) PI control

4
= 2
2. N\
= Y N/
|V
_2 L
0 10 20
Time ¢

(c) PID control

Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Filtered derivative

* Derivative term D = ks replaced

S
byD - kd 1+Tfs

= for small frequencies acts as derivative
= for high frequencies acts as a constant gain

* To mitigate spike when setpoint r is changed, it
can take —y as the input (insteadofe = r — y)

= For constant setpoint, the computation is the same
because r as a constant gets discarded in the
differential
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Filtered derivative
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Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Tuning

¢ Different methods for initial estimation of the
constants k., k;, kg

* Manual fine-tuning may be required
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Ziegler-Nichols step response method

Unit step is applied Constants for controller

and response measured 1 de
u = kp e + F + Td E

v T; [, e(x)dr

computed as:

Type kp I Iy
P 1/a

\ Point of the

steepest slope

/ > PI  09/a 371
T [
—d A

PID 1.2/a 27 057

Figure from Astrom, Murray: Feedback Systems, Princeton University Press, 2012
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Ziegler-Nichols frequency response

Using relay feedback to bring the

system to oscillation

r e — | u

— G(s)

Oscillatory response

Figure from Astrom, Murray: Feedback Systems,
Princeton University Press, 2012

Constants for controller

ket ———+1,%
u= e —
P T; fot e(7)drt “dt

computed as:

Type  kp T; Ty
P 0.5k
PL 04k 08T
PID 0.6k, 0.57. 0.125T;

where:

T. ... oscillation period
d ... relay amplitude
a ... process amplitude

ad
K. = — ... critical gain
- g
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Implementation

° P(ty) = kp("”(tk) — }’(tk))

® I(tg41) = 1(ty) + k;he(ty) + keh(sat(v) — v)

= his the discrete time step

2 D(tk)_Tf+hD( k—1) = +h()’( 0) — Y(te_1))

= steps to arrive at D on the next slide
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Steps to derive D(t;)

1
_ ykds - 1+sT% ~ kas

D +T¢Ds = —kyys

Applying the transfer function s on the respective terms:

TdD+D— kv
f s — ay

Approximating the derivative with backward difference

D(ty) — D(tx-1) y(tx) — y(ti-1)
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Pseudo-code

% Precompute controller coefficients
bi=ki * h

ad =Tf / (Tf + h)

bd =kd / (Tf + h)

br=kt *h

% Control algorithm - main loop
while (running) {

r = adin(chl) % read setpoint from ch1

y = adin(ch?2) % read process variable from ch2
P=kp*(r-v) % compute proportional part
D=ad*D-bd* (y-yold) % update derivative part
v=P+I|+D % compute temporary output

u = sat(v, ulow, uhigh) % simulate actuator saturation
daout(ch1) % set analog output chl
l=1+bi*(r-y)+br*(u-v) % update integral

yold =y % update old process output

wait_for_next_period
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Removing non-linearities

* Sometimes the process has non -linearities

= E.g. coulomb friction (can be modeled as a relay)

°* Can be addressed by conditioning the process

= E.g. adding compensation to the coulomb friction to
output of the controller

28
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