Embedded and Real-time Systems Control

CHARLES UNIVERSITY IN PRAGUE Faculty of Mathematics and Physics

Controlling Environment

- Plant
 - continuous dynamic system
- Controller
 - discrete reactive system

- Controller brings plant
 to a desired state and keeps it there
- Controller keeps a setpoint (the desired state)

Example: moving body

Task: regulate F to accelerate to a given speed and keep the speed

Modeling using block diagram

- Block is a function
 - Input/output ports
 - Some blocks may have internal state (e.g. integrator)
- Connections
 - Data flow between ports
- Simulink (an extension to MATLAB) to model a system using blocks
 - Simulation, analysis, code generation
- Example: moving_body_1_no_controller.slx

Simple relay control

- Switch maximum force on/off
 - Example: moving_body_2_relay.slx

- Fails when there is a lag in the system
 - e.g. because of delayed actuation or because of periodic sampling/actuation
 - Example: moving_body_3_lag_relay.slx

PID Controller

- Typical controller for linear state space systems
 - Linear state-space systems is a system that can be described by the following differential equation: $\frac{dx}{dt} = Ax + Bu, \qquad y = Cx + Du$

Example (moving body):
$$\frac{\partial v}{\partial t} = \frac{F - bv}{m}$$

$$\frac{dx}{dt} = -\frac{b}{m}x + \frac{1}{m}F, \ v = 1x + 0F$$

PID Controller

Ideal form:

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt}$$

- Weighted sum of three terms:
 - Proportional
 - Integral
 - Differential
- Example: moving_body_4_pi.slx

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Proportional term

- Counter-acts proportionally to the error
- Low k_p
 - Slow action
- High k_p
 - May overshoot and oscillate
- Problem
 - Never reaches the set-point if there is a steady resistance
 - Can be mitigated by an extra feedforward term, but this term may vary with the internal state of the system
 - e.g. the viscous friction
- Example: vehicle_speed_1_p.slx

Effect of constants in PID

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Department of Distributed and

Integral term

- Mitigates the steady-state error
- Low k_i
 - Slow gradual "learning"
- High k_i
 - Big overshoot and oscillation
- Example: vehicle_speed_2_pi.slx
 - Note that pure I controller would work too, just slower
- Problem integrator windup
 - Happens when actuator reaches the saturation limit
 - Integrator mistakenly accumulates value
 - Example: vehicle_speed_3_pi_windup.slx

Integrator windup

Anti-windup

- Prevents the integrator to accumulate when saturation is reached
- Example: vehicle_speed_4_pi_anti_windup.slx

Actuator

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Transfer functions

• Differential and integral blocks described using transfer function G(s)

•
$$G(s) = \frac{u}{y}$$

- u ... output from the controller / input to the plant
- y ... output from the plant
- Transfer function describes the effect on frequency and phase of a periodic signal
 - $|G(i\omega)|$... gain
 - $\angle G(i\omega)$... phase shift

Transfer functions – Bode plot

Figure 8.11: Bode plot of the transfer function C(s) = 20 + 10/s + 10s corresponding to an ideal PID controller. The top plot is the gain curve and the bottom plot is the phase curve.

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Transfer functions – examples

Туре	ODE	Transfer Function
Integrator	$\dot{y} = u$	$\frac{1}{s}$
Differentiator	$y = \dot{u}$	S
First-order system	$\dot{y} + ay = u$	$\frac{1}{s+a}$
Double integrator	$\ddot{y} = u$	$\frac{1}{s^2}$
Damped oscillator	$\ddot{y} + 2\zeta\omega_0\dot{y} + \omega_0^2y = u$	$\frac{1}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$
PID controller	$y = k_p u + k_d \dot{u} + k_i \int u$	$k_p + k_d s + \frac{k_i}{s}$
Time delay	$y(t) = u(t - \tau)$	$e^{-\tau s}$

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Variable s

- Exponential (periodic) signal e^{st}
 - $s = \sigma + i\omega$ is a complex variable
 - σ ... decay rate (if $\sigma < 0$), ω ... frequency

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Transfer functions – block diagrams

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Proof of case (c): $y = G_1 e, \ e = u - G_2 y$ $y = G_1 u - G_1 G_2 y$ $y(1 + G_1 G_2) = G_1 u$ $y = \frac{G_1}{1 + G_1 G_2} u$

Derivative term

- Provides prediction of error in the future
 - Does linear extrapolation
- Reduces oscillations and overshoot
- Low k_d
 - Small effect on oscillations
- High k_d
 - Reduces controller response
 - May itself create oscillations
- Examples: vehicle_position_1_p.slx, vehicle_position_2_pd.slx, vehicle_position_3_pid.slx
- Problem sensitivity to high frequencies (noise)
 - Derivative term amplifies the high frequencies
 - Mitigated by low-pass filtering

Effect of constants in PID

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Department of Distributed and

Filtered derivative

- Derivative term $D = k_d s$ replaced by $D = k_d \frac{s}{1+T_f s}$
 - for small frequencies acts as derivative
 - for high frequencies acts as a constant gain

- To mitigate spike when setpoint r is changed, it can take -y as the input (instead of e = r y)
 - For constant setpoint, the computation is the same because r as a constant gets discarded in the differential

Filtered derivative

Tuning

- Different methods for initial estimation of the constants k_p, k_i, k_d
- Manual fine-tuning may be required

Ziegler-Nichols step response method

Unit step is applied and response measured

Constants for controller

$$u = k_p \left(e + \frac{1}{T_i \int_0^t e(\tau) d\tau} + T_d \frac{de}{dt} \right)$$

computed as:

Туре	k_p	T_i	T_d
Р	1/a		
PI	0.9/a	3τ	
PID	1.2/a	2τ	0.5τ

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Ziegler-Nichols frequency response

Using relay feedback to bring the system to oscillation

Oscillatory response

Figure from Åström, Murray: Feedback Systems, Princeton University Press, 2012

Constants for controller $u = k_p \left(e + \frac{1}{T_i \int_0^t e(\tau) d\tau} + T_d \frac{de}{dt} \right)$

computed as:

Туре	k_p	T_i	T_d
Р	$0.5k_c$		
PI	$0.4k_c$	$0.8T_c$	
PID	$0.6k_c$	$0.5T_{c}$	$0.125T_{c}$

where:

 T_c ... oscillation period d ... relay amplitude a ... process amplitude $K_c = \frac{4d}{a\pi}$... critical gain Dependent Systemic Systemic

Implementation

$$P(t_k) = k_p(r(t_k) - y(t_k))$$

I(t_{k+1}) = I(t_k) + k_ihe(t_k) + k_th(sat(v) − v)
 h is the discrete time step

•
$$D(t_k) = \frac{T_f}{T_f + h} D(t_{k-1}) - \frac{k_d}{T_f + h} (y(t_k) - y(t_{k-1}))$$

steps to arrive at D on the next slide

Steps to derive $D(t_k)$

$$D = -\frac{yk_ds}{1+sT_f}$$

$$D = -\frac{yk_ds}{1+sT_f}$$

$$D = -k_dys$$

Applying the transfer function *s* on the respective terms: $T_f \frac{dD}{dt} + D = -k_d \dot{y}$

Approximating the derivative with backward difference

$$T_f \frac{D(t_k) - D(t_{k-1})}{h} + D(t_k) = -k_d \frac{y(t_k) - y(t_{k-1})}{h}$$

Pseudo-code

% Precompute controller coefficients bi = ki * h ad = Tf / (Tf + h) bd = kd / (Tf + h) br = kt * h

```
% Control algorithm - main loop
while (running) {
r = adin(ch1)
y = adin(ch2)
P = kp * (r - y)
D = ad * D - bd * (y - yold)
v = P + I + D
u = sat(v, ulow, uhigh)
daout(ch1)
```

```
l = l + bi * (r - y) + br * (u - v)
yold = y
```

wait_for_next_period

% read setpoint from ch1 % read process variable from ch2 % compute proportional part % update derivative part % compute temporary output % simulate actuator saturation % set analog output ch1

% update integral % update old process output

Removing non-linearities

- Sometimes the process has non -linearities
 - E.g. coulomb friction (can be modeled as a relay)

- Can be addressed by conditioning the process
 - E.g. adding compensation to the coulomb friction to output of the controller

